Terpenoids. Part IV. ${ }^{1}$ The Nuclear Magnetic Resonance Properties of the Stereoisomeric ent-Kauran-15-ols and 13 β-Kauran-15-ols

By J. MacMillan * and E. R. H. Walker, Department of Organic Chemistry, The University, Bristol

The $J_{15,16}$ values for the stereoisomeric ent-kauran- and 13β-kauran-15-ols indicate a twist envelope conformation for ring D in all except the ($16 S$) -15β-ols. The chemical shifts of the $\mathrm{C}-15$ protons confirm the stereochemical assignments. Calculations of the difference in chemical shift of the $\mathrm{C}-15$ protons in isomeric pairs of these alcohols are not sufficiently accurate to distinguish between envelope and twist envelope conformations of ring D.

The conformation of ring D in derivatives of ent-kaurene (1) and 13β-kaurene (phyllocladene) (2) has previously been investigated by studies on the 15,16 -hydride shift in the allylic alcohols (3) and (4), ${ }^{2}$ on the photo-oxygenation of ent-kaurene (1) and 13β-kaurene (2), ${ }^{3}$ and on the o.r.d. properties ${ }^{1}$ and rates of enolisation ${ }^{1}$ of the $16 R$ - [(5) and (7)] and $16 S-[(6)$ and (8)] ketones. The present paper discusses the n.m.r. spectra of all four isomers of ent-kauran-15-ol (9) and of 13β-kauran-15-ol (10) in relation to their ring D conformations.

Table 1
Chemical shifts (τ) and coupling constants (Hz) of the 15 -, 16-, and 17 -protons in the ent-kauran-15-ols and 13 β-kauran-15-ols

	Chemical shift		$J_{16.17}$		Calc.$\theta_{15.16}$
Compound	17-H	$15-\mathrm{H}$		$J_{15,16}$	
(9a)	$9 \cdot 08$	6.48	$7 \cdot 0$	11.0	0°
(9b)	8.95	$7 \cdot 07$	$7 \cdot 5$	$4 \cdot 5$	130
(9c)	8.92	$6 \cdot 84$	$7 \cdot 0$	$4 \cdot 5$	130
(9d)	$9 \cdot 09$	$6 \cdot 47$	$7 \cdot 5$	$8 \cdot 0$	30
(10a)	$9 \cdot 12$	$6 \cdot 14$	$7 \cdot 5$	$11 \cdot 0$	0
(10b)	$8 \cdot 98$	$6 \cdot 76$	$7 \cdot 0$	$5 \cdot 5$	135
(10c)	$8 \cdot 96$	$6 \cdot 27$	$6 \cdot 5$	$4 \cdot 0$	130
(10d)	$9 \cdot 10$	$5 \cdot 84$	$7 \cdot 5$	$8 \cdot 0$	30

a Appropriate values obtained from $J=J_{0} \cos ^{2} \theta$ where J_{0} was assumed to be 11 Hz .

The preparation of the isomers of ent-kauran-15-ol $(9)^{1}$ and 13β-kauran- 15 -ol (10) ${ }^{3}$ has been described. The relevant n.m.r. data are shown in Table 1. With the exception of isomers (9a) and (10a), the values of $J_{15.16}$ and the derived dihedral angles for $\mathrm{C}(15)-\mathrm{H}$ and $\mathrm{C}(16)-\mathrm{H}$ indicate twist envelope conformations. In the two exceptions (9a) and (10a) both the 15 -hydroxyand 16 -methyl groups are β-oriented, and any twisting

[^0]of the 15,16 -bridge would relieve eclipsing only at the expense of severe endo-steric interaction.
The chemical shifts for the 15 -protons are consistent with the assigned stereochemistries. As expected, the 15 -proton is shielded by a cis-16-methyl group. This shielding is caused by the magnetic anisotropies of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds of the 16 -methyl substituent and may be calculated for epimeric pairs by the method of ApSimon et al. ${ }^{4}$ To evaluate the use of such calculations in the study of the conformation of ring D in the alcohols listed in Table 1, the chemical shift differences between the C-16 epimers (9 a) and (9 b) were computed. The parameters were measured from Dreiding models and the calculations were made with a PDP8/L computer by use of D.E.C.s 'Focal conversational language'. The results are shown in Table 2 for three conformations of ring D: (a) an envelope with $\mathrm{C}-15$ and $\mathrm{C}-16$ substituents eclipsed; (b) a twist envelope with C-16 moved in the α-direction to give a 10° dihedral angle between $\mathrm{C}-15$ and C-16 substituents; and (c) a similar twist envelope where C -16 is moved in the β-direction to the same extent. The agreement between the calculated and observed differences in chemical shift is good, particularly for the non-twist envelope; however in view of the errors involved in the calculation (see later), this agreement may be fortuitous.

Qualitatively, the calculations readily distinguish between the two epimers. The calculations show that the shielding of the 15 -proton by a cis-16-methyl group is due mainly to the anisotropy of the $\mathrm{C}-\mathrm{H}$ bonds of the methyl group. However the calculations are too inaccurate to provide conformational information in the present case. A major inaccuracy lies in the measurement of angles and distances, particularly in

[^1]Table 2
Calculated shielding (p.p.m.) of the 15 -proton in the alcohols (9a) and (9b)

${ }^{a}$ Terms I + II. ${ }^{b}$ Terms IV $+\mathrm{V} .{ }^{c}$ Term III (see Experimental section).
calculations involving the methyl group where the limit of $\pm 0 \cdot 1 \AA$ in the measurement of distance produces an error of ± 0.25 p.p.m. Since the methyl calculations

(1)

(2)

(3) $R^{1}=H, R^{2}=O H$
(4) $R^{1}=O H A^{2}=H$

(5) $R^{1}=M e, R^{2}=H$
(6) $R^{1}=H \cdot R^{2}=M e$

(7) $R^{1}=M e, R^{2}=H$
(8) $R^{1}=H, R^{2}=M e$

$\begin{array}{lllll} & & R^{1} & R^{2} & R^{3} \\ \text { (9) } & R^{4} \\ & \mathrm{OH} & \mathrm{H} & \mathrm{Me} & \mathrm{H} \\ \mathrm{b}: \mathrm{OH} & \mathrm{H} & \mathrm{H} & \mathrm{Me} \\ \mathrm{c}: \mathrm{H} & \mathrm{OH} & \mathrm{Me} & \mathrm{H} \\ \mathrm{d}: \mathrm{H} & \mathrm{OH} & \mathrm{H} & \mathrm{Me}\end{array}$

$\begin{array}{rlll} & R^{1} & R^{2} & R^{3} \\ \text { (10) } & R^{4} \\ \mathrm{O}: \mathrm{OH} & \mathrm{H} & \mathrm{Me} & \mathrm{H} \\ \mathrm{b} ; \mathrm{OH} & \mathrm{H} & \mathrm{H} & \mathrm{Me} \\ \text { c: } \mathrm{H} & \mathrm{OH} & \mathrm{Me} & \mathrm{H} \\ \text { d; } \mathrm{H} & \mathrm{OH} & \mathrm{H} & \mathrm{Me}\end{array}$
occur twice the total errors are estimated to be $\pm 0 \cdot 4$ p.p.m.

Table 3
Chemical shift (τ) of the 10 -methyl protons in 13β-kaur-16-ene (2) and some derivatives

133-Kaur-16-ene (2)
13 β-Kaur-15-ene
13β-Kaur-16-en-15 α-ol
133-Kaur-16-en-15-one
133-Kaur-15-en-17-ol
(16R)-13 β-Kaur-15-one (7)
(16S)-13 β-Kaur-15-one (8)
(16R)-13 3 -Kauran-15 β-ol (10a)
(16S)-13 -Kauran-15 3 -ol (10b)
(16R)-13 β-Kauran-15 α-ol (10c)
(16S)-13 3 -Kauran-15 α-ol (10d)

$9 \cdot 1$ $9 \cdot 29$ 9.09 9.25 9.28 $9 \cdot 18$ 9.22
9.06
(d, $\underset{9 \cdot 03}{J} 1 \mathrm{~Hz}$)
$9 \cdot 03$
$9 \cdot 10$
(16S)-13 β-Kauran-15 α-ol (10d)

The effect of some ring D substituents on the chemical shift of the 10 -methyl group in 13β-kaurane derivatives is shown in Table 3. The anisotropic shielding by the 15,16 -double bond, previously ${ }^{5}$ noted in 13β-kaur15 -ene, also occurs in 13β-kaur-15-en-17-ol. A 15 -oxofunction exerts a similar anisotropic shielding which is most pronounced in the case of the enone, 13β-kaur16 -en- 15 -one. The 10 -methyl group is deshielded by a 15β-hydroxy-substituent. The 10 -methyl group in ($16 R$)-13 β-kauran- 15β-ol (10 a) gives rise to a doublet with $J c a .1 \cdot 0 \mathrm{~Hz}$ which collapsed to a broad singlet on irradiation at $\tau 8.46$. In the spectra of all other derivatives of 13β-kaurane and ent-kaurane examined the 10 -methyl signal was a singlet.

EXPERIMENTAL

N.m.r. spectra were determined with a Varian HAl00 instrument for deuteriochloroform solutions, with tetramethylsilane as internal standard. Calculations were performed on a PDP8/L computer by use of 'Focal' conversational programming language, supplied by Digital Equipment Corporation.

The method is illustrated for the $16 S$ - and $16 R$-epimers (9a) and (9b) with the five-membered ring in an envelope
${ }^{5}$ Y. Kitahara and A. Yoshikoshi, Bull. Chem. Soc. Japan, 1964, 37, 890.
conformation and the substituents at C-15 and C-16 eclipsed. The following relationship, derived by ApSimon et al., ${ }^{4}$ was used (see ref. 4 for definition of parameters):

$$
\begin{aligned}
\Delta \sigma & =\Delta \chi^{\mathrm{CC}} \cdot \mathrm{f}\left[\theta_{1}, R_{1}\right] \\
& +\chi_{\mathrm{L}}^{\mathrm{CO}}, \chi_{\mathrm{T}}{ }^{\mathrm{CO}} \mathrm{f}\left[\theta_{1}, R_{1}, S_{1}\right] \\
& +\Delta \chi^{\mathrm{CH}}{ }_{\mathrm{f}}\left[R_{2}, a, b, l, v\right] \\
& -\left\{\chi^{\mathrm{OH}} \cdot \mathrm{f}\left[\theta_{3}, R_{3}\right]\right. \\
& \left.+\chi_{\mathrm{L}}{ }^{\mathrm{CH}}, \chi_{T} \mathrm{OH}_{\mathrm{f}}\left[\theta_{3}, R_{3}, S_{3}\right]\right\}
\end{aligned}
$$

Term I
Term II
Term III
Term IV
Term V
Constants. $-\chi_{\mathrm{L}}{ }^{\mathrm{CC}}=+3.15 ; \quad \chi_{\mathrm{T}}{ }^{\mathrm{CC}}=-10.83 ; \quad \chi_{\mathrm{L}}{ }^{\mathrm{CH}}=$ $+0.92 ; \chi_{\mathrm{T}}{ }^{\mathrm{CH}}-10.08$ (all in cm^{3} molecule ${ }^{-1} \times 10^{30}$); $b=0.77 \times 10^{-8} \mathrm{~cm} ; \gamma=0.7 \times 10^{-8} \mathrm{~cm}^{-1}$.

Variables.-For the $16 S$-epimer (9 a): $R_{1}=2.17 \times 10^{-8}$ $\mathrm{cm} ; \theta_{1}=78^{\circ} ; S_{1}=0.6 \times 10^{-8} \mathrm{~cm} ; R_{2}=2.8 \times 10^{-8} \mathrm{~cm} ;$ $a=2.5 \times 10^{-8} \mathrm{~cm} ; \quad l=2.2 \times 10^{-8} \mathrm{~cm} ; \quad k^{2}=+0.18896$ hence $K=1.6546$ and $E=1.4933 ; R_{3}=2.65 \times 10^{-8} \mathrm{~cm}$; $\theta_{3}=42^{\circ} ; S_{3}=0.25 \times 10^{-8} \mathrm{~cm}$.

For the $16 R$-epimer (9 b): $\quad R_{1}=2.65 \times 10^{-8} \mathrm{~cm} ; \quad \theta_{1}=$ $42^{\circ} ; \quad S_{1}=0.6 \times 10^{-8} \mathrm{~cm} ; \quad R_{2}=3.5 \times 10^{-8} \mathrm{~cm} ; \quad a=$ $3.25 \times 10^{-8} \mathrm{~cm} ; \quad k^{2}=+0.1387$ and hence $K=1.6306$ and $E=1.1543 ; \quad R_{3}=2.17 \times 10^{-8} \mathrm{~cm} ; \quad \theta_{3}=78^{\circ} ; \quad S_{3}=$ $0.25 \times 10^{-8} \mathrm{~cm}$.

Hence, for the $16 S$-epimer (9a):
Term $\quad I=\left[\left(1-3 \cos ^{2} \theta_{1}\right) / 3 R_{1}^{3}\right] \Delta \chi^{\mathrm{OC}}=+0 \cdot 40$ p.p.m.

Term II $=\frac{S_{1}{ }^{2}}{R_{1}{ }^{5}}\left[\frac{-\left(\chi_{\mathrm{L}}+2 \chi_{\mathrm{T}}\right)}{2}+5\left(\chi_{\mathrm{L}} \cos ^{2} \theta_{1}+\chi_{\mathrm{T}} \sin ^{2} \theta_{1}\right)\right.$

$$
-\frac{35}{6}\left(\chi_{I} \cos ^{4} \theta_{1}+\chi_{T} \sin ^{4} \theta_{1}\right]=+0 \cdot 12 \text { p.p.m. }
$$

Term III $=\left[-3 \frac{2 K}{4 b^{2} \pi p^{\frac{1}{2}}}+\frac{\left(3 a^{2}-b^{2}\right)}{2 b^{2}} \cdot \frac{2 E}{\pi p^{\frac{1}{2} q}}-\frac{3\left(a^{2}-b^{2}\right)^{2}}{4 b^{2}}\right.$.

$$
\left.\frac{2(4 w E-q K)}{3 \pi p^{\frac{3}{2}} q^{2}}\right] \Delta \chi^{\mathrm{CH}}=+\mathrm{l} \cdot 04 \text { p.p.m. }
$$

Term IV $=\left[\left(1-3 \cos ^{2} \theta_{3}\right) / 3 R_{3}{ }^{3}\right] \Delta \chi^{\mathrm{CH}}=-0 \cdot 13$ p.p.m.
Term $\quad \mathrm{V}=\left[\frac{\Delta \chi}{3}\left(\frac{1-3 \cos ^{2} \theta_{3}}{R_{3}{ }^{3}}\right)^{-}\right]+\frac{S_{3}{ }^{2}}{R_{3}{ }^{5}}\left[-\frac{\left(\chi_{\mathrm{L}}+2 \chi_{\mathrm{T}}\right)}{2}+\right.$ $\left.5\left(\chi_{\mathrm{L}} \cos ^{2} \theta_{3}+\chi_{\mathrm{T}} \sin ^{2} \theta_{3}\right)-\frac{35}{6}\left(\chi_{\mathrm{L}} \cos ^{4} \theta_{3}+\chi_{\mathrm{T}} \sin ^{4} \theta_{3}\right)\right]$

$$
=-0.12 \times 10^{-3} \text { p.p.m. }
$$

Similarly for the $16 R$-epimer (9 b): Term $\mathrm{I}=-0 \cdot 16$ p.p.m.; Term II $=+0.002$ p.p.m.; Term III $=+0.48$ p.p.m.; Term IV $=+0.31$ p.p.m.; and Term $V=$ +0.02 p.p.m.
We thank the Worshipful Company of Salters for a Research Scholarship (to E. R. H. W.).
[1/2300 Received, 3rd December, 1971]

[^0]: ${ }^{1}$ Part III, J. MacMillan and E. R. H. Walker, J.C.S. Perkin I, 1972, 986.
 ${ }^{2}$ M. F. Barnes and J. MacMillan, J. Chem. Soc. (C), 1967, 361
 ${ }^{3}$ J. MacMillan and E. R. H. Walker, J.C.S. Perkin I, 1972,

[^1]: 4 J. W. ApSimon, W. G. Craig, P. V. Demarco, D. W. Mathieson, L. Saunders, and W. B. Whalley, Tetrahedron, 1967, 23, 2339 and 2357.

